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Abstract Entries of the topological distance matrix are shown to be functions of
entries of the reduced distance matrix, which has a smaller size. The latter entries are
expressed through a minimum number m of independent parameters (m ≤ 2n−3). The
expanded distance matrices, whose sum constitutes the reduced matrix, are defined.
The reduced vectors have lower degeneracy than the corresponding vectors proposed
by Randić as molecular codes. Nondegenerate sets of reduced-matrix entries are pro-
posed as molecular codes.

Keywords Topological distances · Tree graphs · Reduced distance matrix ·
Molecular coding · Nondegenerate vectors

1 Introduction

From the mathematical point of view, structural formulas of organic compounds are
multigraphs, usually termed molecular graphs. Their vertices represent atoms, and
edges represent chemical bonds.

One of the best known characteristics of a molecular graph (G) is its distance matrix
D(G) = ||di j ||, where each integer number di j is the number of graph edges between
vertices i and j . A multitude of topological indices are based on matrix D(G) [1–3].
The best known among them is the Wiener index W , which was proposed in 1947
[4,5] as a structural parameter for describing the dependences of physicochemical
properties of alkanes on their structure. By definition, W is the half-sum of all entries
di j of matrix D(G) [6]:
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W = 1

2

∑

(i, j)

di j .

The value of W is associated with alkane branching: it is maximum for linear alkanes
and minimum for the most branched ones. In [4,5], Wiener proposed another index
p3, which is equal to the half-number of all “threes” di j = 3 in D(G):

p3 = 1

2

∑

di j =3

1

3
di j .

Index f suggested by Platt in his key paper [7] is the half-sum of the numbers of all
“twos” in matrix D(G):

f = 1

2

∑

di j =2

1

2
di j .

Note that Platt was the first to use the term index in this context. Moreover, the same
paper by Platt logically supplements Wiener’s idea of using pi values as independent
variables (Wiener considered the sum of pi values with odd i : k1 p1+k3 p3+k5 p5 . . .).
However, neither Wiener nor Platt knew at that time that their parameters were related
to graph theory and would later be termed topological indices [6,8,9].

Graph theory was first explicitly applied to establishment of relationships between
properties of chemical compounds and their molecular structures in [10–13]. Algebraic
operations with adjacency matrices aimed at calculating various structural parameters
are reviewed in [10]. In [11,12], the physicochemical properties of alkanes are in-
troduced as functions of entries of another matrix, which was earlier proposed by
the same author for linear coding of chemical graph structures [14]. This matrix is
the matrix of distances only between vertices of degree 1. We will refer to it as the
reduced distance matrix; evidently, its size is usually much smaller than that of the
initial distance matrix. Later, in [15], it was proved that there are many linear depen-
dences between entries of the reduced matrix: among its C2

n = n(n−1)
2 entries, no more

than (2n − 3) are linearly independent.
In this study, we analyze the structure of the reduced matrix and show how one can

express it using a minimum number of independent parameters.
Despite its wide use in various applications, the distance matrix is redundant [16],

i.e., most of its entries are dependent on others and do not carry any useful informa-
tion. The latter fact is important for consideration of topological indices based on this
matrix. Obviously, since the overwhelming part of the matrix entries are “informa-
tion garbage,” its actual information content is low and search of structure–property
regularities on this basis is somewhat hindered. As an especially evident example con-
firming the latter assertion, one can take the ordered sequence of pi values proposed
by Wiener and Platt. Randić [17] presented them in the form of vector (p1, p2, . . .

pk) and suggested its use as the “molecular code.” However, even Randić himself
mentioned examples of its degeneration for isomers starting from C9H20. Naturally,
the degeneration becomes increasingly significant for heavier alkanes.
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We propose the term distance vector for the vector constructed on the basis of the
distance matrix. The vector constructed in the same way from the reduced distance
matrix can be named the reduced distance vector. Below, we prove that the reduced
distance vector has a lesser degree of degeneration despite its smaller length. Finally,
using the reduced distance matrix, one can build a fairly simple set of integers (for
example, the top row of this matrix together with the maximum nonzero diagonal)
that is completely nondegenerate. It can be regarded as the molecular code [15].

2 Structure and properties of reduced distance matrix

For simplicity, here we will consider alkanes (tree graphs), because generalization
of the problem for arbitrary graphs is obvious. All N vertices of an alkane will be
numbered in the following way: numbers from 1 to n1 correspond to first-degree
vertices (methyl groups in an alkane), and other vertices are numbered from n1 + 1 to
N . Then the distance matrix is

D(G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 d12 . . . d1,n1 d1,n1+1 . . . d1N

d21 0 . . . d2,n1 d2,n1+1 . . . d2N

. . . . . . 0 . . . . . . . . . . . .

dn1,1 dn1,2 . . . 0 dn1,n1+1 . . . dn1,N

dn1+1,1 dn1+1,2 . . . dn1+1,n1 0 . . . dn1+1,N

. . . . . . . . . . . . . . . . . . . . .

dN ,1 dN ,2 . . . dN ,n1 dN ,n1+1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (1)

Since N = n1 + n2 + n3 + n4 (here n1, n2, n3, and n4 are the numbers of primary,
secondary, tertiary and quaternary C atoms, respectively), we usually have n1 � N
(only for ethane n1 = N = 2). It was shown in [15] that all entries of matrix (1)
not included in the selected top-left-corner matrix are dependent and do not carry any
actual information on the structure of tree G. The selected part of matrix D(G) is
hereafter termed the reduced distance matrix D0(G):

D0(G) =

∣∣∣∣∣∣∣∣

0 r12 . . . r1n

r21 0 . . . r2n

. . . . . . . . . . . .

rn1 rn2 . . . 0

∣∣∣∣∣∣∣∣
, (2)

where n = n1, ri j = di j . In [14], matrix (2) in the form of ordered sequence

R(G) = (r12, r13, . . . , r1n; r23, . . . , r2n; . . . ; rn−1,n) (3)

was proposed for linear coding of graphs. It has been shown that one can unambigu-
ously restore tree G from sequence (3), and relationship to symmetry group S3 has been
pointed out. However, set (3) has too many entries, i.e., C2

n = n(n−1)
2 , and therefore is

not of practical interest for linear coding either.
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As is mentioned above, matrix D0(G) contains no more than (2n − 3) independent
entries [15], i.e., one can skip at least n2

2 − 3n
2 + 3 entries in sequence (3), whereas the

remaining (2n − 3) entries can be used in practical coding of chemical structures. As
the basis in (3), one can take entries of the diagonal adjacent to the main (zero) one
together the first row or last column of the matrix, etc.

If m is the minimum number of parameters that can describe the topological struc-
ture of the tree, we have

m ≤ 2n − 3.

One can define a branch as the set of vertices starting from a first-degree vertex
i(i ≤ n1) and extending to the nearest vertex of degree 3 or 4 [16]. For alkanes, it is
a chain of the form CH3 − (CH2)k1 (k1 = 0, 1, 2, . . .). Denoting the branch length by
ρi , we obtain

ρi = 1 + ki .

Similarly, the length of any segment between vertices of degree 3 or 4, denoted ρi j

(n1 < i , j ≤ N ), is the number of vertices of degree 2 (CH2 groups) between them
plus one. Obviously, the set of all lengths ρi and ρi j is a combination of independent
parameters from which the structure of tree G can be restored, and the number of such
parameters is just m. But here it is essential to take into account the order of these
parameters as well, not just their set.

Let us determine m. As we have already found, the number of CH2 groups
(vertices of degree 2) affects only the values of parameters ρi and ρi j but not their
number. Therefore, one can take n2 = 0 and thus arrive at an obvious relationship

n1 + n3 + n4 = N , (4)

i.e., assume that the alkane tree in question contains only vertices of degrees 1, 3, and
4. Thus, the number of its edges is N − 1. On the other hand, we have a well-known
relationship n1 + 2n2 + 3n3 + 4n4 = 2(N − 1). So for n2 = 0 we obtain

n1

2
+ 3

2
n + 2n4 = N − 1. (5)

Obviously, m = N − 1, and replacement of N by m + 1 in relationship (4) yields

n3 = m + 1 − n1 − n4.

Substitution into (5) yields

N − 1 = m = n1

2
+ 3

2
(m + 1 − n1 − n4) + 2n4 = 3

2
m + 3

2
− n1 + 1

2
n4,

whence we arrive at 3
2 m − m = n1 − 1

2 n4 − 3
2 , i.e., m = 2n1 − 3 − n4.
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Substituting n1 = n, we finally obtain

m = 2n − 3 − n4. (6)

So, addition of each quaternary atom C reduces the number of independent parameters
by unity and this number assumes the highest value for structures free of quaternary
atoms C.

It is easy to express all entries of reduced distance matrix (2) in terms of ρi and ρi j .
Let us consider the following graph as an example:

1 i1

ρ12 i2
ρ24 i4

ρ46 i6

2 3 4

i3 i5

ρ23 ρ45

11

10

7
8

95 6

A1

Since n = 11, the size of matrix D0 is 11 × 11:

D0(A1) =

∣∣∣∣∣∣∣∣∣∣

0 ρ1 + ρ2 ρ1 + ρ3 ρ1 + ρ12 + ρ4 ρ′
15 . . . ρ′

1,11
ρ2 + ρ1 0 ρ2 + ρ3 ρ2 + ρ12 + ρ4 ρ′

25 . . . ρ′
1,11

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

ρ′
11,1 ρ′

11,2 . . . . . . . . . . . . 0

∣∣∣∣∣∣∣∣∣∣

, (7)

where, for simplicity, we have introduced the following designations:

ρ′
15 = ρ1 + ρ12 + ρ23 + ρ5,

ρ′
25 = ρ2 + ρ12 + ρ23 + ρ5,

ρ′
1,11 = ρ′

11,1 = ρ1 + ρ12 + ρ24 + ρ46 + ρ11, and
ρ′

11,2 = ρ′
2,11 = ρ11 + ρ12 + ρ24 + ρ46 + ρ2.

This matrix is very cumbersome; therefore, let us represent it as a sum of simpler
ones, making the meaning of separate parameters in Eq. 7 more obvious. To begin
with, let us consider the following graph:

ρ1

ρ2 ρ3

ρn1

2 3

n

....

X

A2
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We can construct a diagonal matrix Rn for graph A2 (so-called star graph in graph
theory):

Rn =
⎛

⎝
ρ1 . . . 0
. . . ρ2 . . .

0 . . . ρn

⎞

⎠ . (8)

All its entries except for those in the main diagonal are zeros, whereas the entries in
the main diagonal are the branch lengths ρi . Also let us define the topological matrix
τ 0

n of order n × n:

τ 0
n =

⎛

⎜⎜⎝

0 1 . . . 1
1 0 . . . 1
. . . . . . . . . . . .

1 1 . . . 0

⎞

⎟⎟⎠ , (9)

where all entries, except for the zero main diagonal, are equal to unity. Using matrices
(8) and (9), we can express the reduced matrix of graph A2 as

D0(A2) = τ 0
nRn + (τ 0

nRn)T, (10)

where symbol T means transposition.
Let us assume that vertex X of graph A2 has an internal structure; e.g., for graph

A1 it is the graph obtained after truncation of all its eleven branches [18]:

i1 i2 i4 i6

i3 i5
A3

In the case of n = 11, Eq. 10 yields

D0(A2) = τ 0
11R11 + (τ 0

11R11)
T. (11)

In turn, graph A3 can be represented as

Y

A4

i1

i2’

i6

i3
i5

In this case, vertex Y of the “truncated” graph A4 is graph

i2 i4
A5
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All vertices from which branches 1–11 grow in graph A1 are now joined to Y in
graph A4. That is why vertex i ′2 from which branch 4 grows is considered as a separate
one but the distance between i ′2 and Y is assumed to be zero. This vertex is as if virtual,
and it enables us to make allowance for the fact that the branch extending from the
real vertex i2 was truncated earlier. That is why we have introduced this zero distance.
Thus, matrix R5 for A4 has the form

R5 =

⎛

⎜⎜⎜⎜⎝

ρ12
0

ρ23
ρ45

ρ16

⎞

⎟⎟⎟⎟⎠
,

and the reduced matrix of size 5 × 5 is

D0(A4) = τ 0
5R5 + (τ 0

5R5)
T. (12)

For graph A5 we have

D0(A5) =
(

0 ρ24

ρ24 0

)
. (13)

So, matrices (7) and (11) are of size 11 × 11, matrix (12) is of size 5 × 5, and matrix
(13) is of size 2×2. They seem incommensurable, and therefore their comparison (not
to speak of summation) seems impossible. In this regard, we introduce the following
construction. Let us use the designation [ik] for the number of branches extending
from vertex ik , and then entries (k, j) in matrix (12), which are equal to the distances
between vertices ik and i j , (sums of the corresponding distances ρi j ), will be replaced
by constant matrices of size [ik] × [i j ]. After that, we obtain a square matrix of size
{∑

k
[ik]

}
×

{
∑

j

[
i j

]
}

:

D0 =

∣∣∣∣∣∣∣∣

[i1 × i1] [i1 × i2] [i1 × i3] [i1 × i4] [i1 × i5] [i1 × i6]
[i2 × i1] [i2 × i2] [i2 × i3] [i2 × i4] [i2 × i5] [i2 × i6]
. . . . . . . . . . . . . . .

[i6 × i1] [i6 × i2] [i6 × i3] [i6 × i4] [i6 × i5] [i6 × i6]

∣∣∣∣∣∣∣∣
, (14)

where [ik × i j ] are constant matrices of size [ik] × [i j ]. One can term this matrix the
expanded distance matrix. Here, instead of the zero main diagonal, we have a quasi-
diagonal consisting of zero square matrices [ik] × [ik], and instead of the symmetry
property, we have its generalization

[ik × i j ] = [i j × ik]T.
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Having defined the expanded distance matrix D0 in such a way, we obtain

D0(A1) = D0(A2) + D0(A4) + D0(A5), (15)

where matrix D0(A4) has assumed the following look instead of (14):

D0(A4) =

3 1 2 3 2
0 ρ12 ρ12 + ρ23 ρ12 + ρ45 ρ12 + ρ46 3
ρ12 0 ρ23 ρ45 ρ46 1
ρ23 + ρ12 ρ23 0 ρ23 + ρ45 ρ23 + ρ46 2
ρ45 + ρ12 ρ45 ρ45 + ρ23 0 ρ45 + ρ46 3
ρ46 + ρ12 ρ46 ρ46 + ρ23 ρ46 + ρ45 0 2

Here, the numbers at the top and on the right of the 5 × 5 matrix are the sizes of the
constant rectangular matrices. For D0(A5), instead of (13), we obtain an even simpler
matrix:

D0(A5) =
6 5

0 ρ24 6
ρ24 0 5

So, matrix D0(A4) and matrix (13) have been expanded from size 5 × 5 to 11 × 11
and from 2 × 2 to 11 × 11, respectively.

According to [18], any tree after several truncations becomes a simple graph with no
more than 2 vertices of degree 1, that is, a normal alkane or methane. This means that
any tree can be characterized by an expression like (15) for its reduced matrix. Separate
matrices constituting the sum characterize the parameters of “shells” formed by a
succession of truncations [18], and the number of terms in such an expansion char-
acterizes the structural complexity and, in a certain sense, the branching of
alkanes.

3 Topological types of trees

The topological structure of a tree (alkane in our case) is determined by the
set of its segments and branches without consideration of their length, i.e., in the
first approximation, by the numbers of primary (n1), tertiary (n3) and quaternary
(n4) atoms. Relationships between them are derived by excluding N from
Eqs. 4 and 5:

n3 + 2n4 = n1 − 2.

By the way, if we consider n2 �= 0 in these equations, the n2 value is excluded
together with N ; this means that one can increase or decrease the number of vertices
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of degree 2 without changing the topological type. We state that the main value deter-
mining the type of an alkane is n1 (i.e., the number of methyl groups). Hereafter we
will denote it by n, and the last equation turns into

n3 + 2n4 = n − 2. (16)

The n and n4 values determine the size of the reduced matrix and the number of
independent parameters m in formula (6), respectively. Note that, for given n and
n4, the n3 value is strictly determined and invariable. Let us consider all possible
topological types for different n. We will not analyze n = 0 or n = 1, since there are
no trees for n = 0 and the tree for n = 1 has only one vertex (methane). Let us take
n = 2; then, as follows from (16),

n3 + 2n4 = 0.

There is only one solution: n3 = n4 = 0. It is obvious that one can consider only
integer nonnegative numbers as solutions to Eq. 16. Therefore, in the case of n = 2, we
have two CH3 groups and an arbitrary number of CH2 groups, i.e. normal unbranched
alkanes. This type of alkanes is hereafter termed type 2.

For n = 3 we have

n3 + 2n4 = 1.

There is only one solution: n3 = 1, n4 = 0. This topological type (i.e., type 3)
corresponds to singly branched alkanes, or monoalkylalkanes. Note that, as follows
from Eq. 16, the parities of integer numbers n1 and n3 are always equal for all alkanes.
For n = 4 we have

n3 + 2n4 = 2.

There are two solutions: n3 = 2, n4 = 0 and n3 = 0, n4 = 1. Thus, one can
distinguish two subtypes of solutions:

1

2 3

4 1

2 3

4

4.0 4.1

and

For n = 5 we have n3 + 2n4 = 3 and also two solutions: n3 = 3, n4 = 0 and
n3 = 1, n4 = 1; i.e., there are subtypes 5.0 and 5.1:
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5.0

5.1

1

2 3 4

5

1

2 3

4

5

For n = 6 we have three solutions: n3 = 4, n4 = 0; n3 = 2, n4 = 1; and n3 = 0,
n4 = 2; i.e., there are three subtypes:

6.0

1

2 3 4 5

6

1

2 3 4

6

5

6.1

1

2 3 4

6

5

6.2

or

1

2 3

4

65

So, the type and subtype are again determined by the numbers of primary (methyl
groups) and quaternary atoms, respectively. For n = 7 we also have three solutions;
for n = 8 we have four solutions (accordingly, four subtypes); etc.

Thus, for each type n, the size of the reduced matrix is n × n. Let us consider rij

values as vectors of infinite length whose coordinates rij =
{

rm
i j

}
are generated by the

alkane (tree) with number m; then there are specific linear dependences between these
vectors for each type and the basis consists of (2n − 3) vectors. However, if one takes
not all alkanes of type n but only those of a certain subtype n.k, then the basis is re-
duced to m = 2n−3−n4 = 2n−3−k vectors. For example, see the following alkane:

1

2 3
4

5

A6

For this alkane A6 of type 5 and subtype 5.1, we have m = 2n−3−k = 2·5−3−1 =
6. For example, we can choose the following vectors as the basis:

{r12, r13, r14, r15, r23, r34}. (17)
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The remaining vectors are expressed in basis (17) as follows:

r24 = r14 + r23 − r13
r25 = r15 + r23 − r13
r35 = r34 + r15 − r14
r45 = r34 + r15 − r13

. (18)

Expressions (18) are not too symmetrical: they do not contain basis vector r12. But
this depends on the way of vertex numbering, since vertices 1 and 2 in graph A6 are
structurally different from vertices 3–5. If the lengths of branches ρ1 to ρ5 are not equal
to each other, graph A6 has n! = 5! = 120 ways of vertex numbering and, hence, 120
different variants of the reduced matrix. We will consider this issue in more detail in
the next section.

4 Distance vectors: molecular codes

The set of pk values mentioned in the Introduction was termed molecular code by
Randić [17]. In fact, the term is not quite appropriate, since it is generally implied that
a code means a set of numbers unambiguously corresponding to the coded structure,
whereas the set

P = {p1, p2, . . . , pk}

is degenerated even for C9H20 (to say nothing of larger molecules), as was pointed
out by Randić himself. As is mentioned above, one can define the reduced distance
vector by analogy with Randić’s vector using the reduced distance matrix instead of
the ordinary distance matrix:

P0 = {p0
2, . . . , p0

k }.

The length of vector P0 is always smaller by unity than that of vector P , since the
minimum distance between first-degree vertices is 2 (remember that p1 is the number
of edges, i.e., the number of C–C bonds in an alkane). At the same time, the last
coordinates pk and p0

k of these vectors are always equal, since the maximum distances
for any tree are the distances between vertices of degree 1. Although vectors P and P0

are constructed according to the same algorithm, one can expect the reduced vector
(built using a simpler but more “meaningful” matrix) to contain more information as
a whole. And, indeed, P0 is first degenerated only for C10H22, and its degeneracy for
more complex alkanes is also lower than that of vector P. Table 1 lists the degrees
of degeneracy for alkanes from C9H20 to C15H32 (remember that neither P nor P0 is
degenerated for alkanes under C9H20).

As it is seen from Table 1, vectors P and P0 are degenerated not only in pairs but
also in triples etc. Also, it is obvious that neither P nor P0 (the latter is degenerated to
a somewhat lower extent) can be used as the molecular code. However, using matrix
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Table 1 Numbers of
degenerated structures for
vectors P and P0 in alkanes

Alkanes Number of Number of isomers with degeneration
isomers

For vector P For vector P0

C9H20 35 2 0
C10H22 75 2 2
C11H24 159 25 12
C12H26 355 34 28
C13H28 802 77 55
C14H30 1858 161 138
C15H32 4347 638 419

D0 enables one to propose a fairly simple and effective nondegenerate set, which is
quite suitable to be a molecular code.

For a graph of type 2, matrix D0 contains only one entry r12. The case is trivial,
and we may skip it. For type 3 we have

D0 =
⎛

⎝
0 r12 r13

0 r23
0

⎞

⎠ .

For simplicity we did not write out the entries under the main diagonal. Clearly, three
numbers ri j are enough to restore a structure of type 3:

12

3

A7

ρ1
ρ2

ρ3

since we have simple relationships

ρ1 = r12 + r13 − r23

2
, ρ2 = r12 + r23 − r13

2
, ρ3 = r13 + r23 − r12

2
.

In this case, the numbering of vertices does not matter. However, for more complicated
compounds, the order of numbering becomes important, since some entries of the D0
matrix are linearly dependent. Here we will apply the “cyclic” numbering, where the
numbers at vertices of degree 1 increase as we walk around the structural formula in
the clockwise direction, as it is described in detail in [15]. Notice that vertices in graph
A1 are numbered in just the same manner. For alkanes of type 4 we have

D0 =

⎛

⎜⎜⎝

0 r12 r13 r14
0 r23 r24

0 r34
0

⎞

⎟⎟⎠ .

Let us successively write down entries of the first row (from right to left) and then
entries of the diagonal (downwards):
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R0
4 = (r14, r13, r12, r23, r34). (19)

Since the number of these entries is odd (namely, 2n − 3), there is always a “middle
element” in such a set. Here it is r12, whose neighbors are r13 and r23. These three
numbers are sufficient to construct tree A7. Owing to cyclic numbering, vertex 4 will
be between vertices 3 and 1; so, replacing the middle “triplet” by the r13 value and
using the left and right neighbors r14 and r34, we construct one of the three graphs

12

3

12

3

12

3
4 4 4

The choice between them is determined by numbers ri j themselves, as is mentioned
above for restoration of tree A7. Thus, the r24 element is not used (it can be expressed
as a linear combination of others). For type 5, instead of (19), we obtain the set

R0
5 = (r15, r14, r13, r12, r23, r34, r45).

One can unambiguously restore a tree of type 5 from this set, starting from the central
triplet and using the above method. So, the set of (2n − 3) numbers constituting the
top row and the maximum nonzero diagonal

R0
n = (r1n, r1,n−1, . . . , r13, r12, r23, . . . , rn−2,n−1, rn−1,n) (20)

always corresponds to only one tree and can be used as its molecular code if the
numbering of vertices of degree 1 is cyclic. Actually, a set like (20) can be selected in
many ways. For example, the set proposed in [15] is actually more convenient from
the standpoint of coding and decoding.

Let us consider an example. This is an alkane of type 5.1:

1

2 3 4

5a

b c

ef

d A8

Here a, b, c, d and e are the lengths of branches 1–5, respectively, and f is the
length of the internal segment. Then the reduced matrix according to formula (15)
looks as follows:

D0(A8) = τ 0
5

⎛

⎜⎜⎜⎜⎝

a
b

c
d

e

⎞

⎟⎟⎟⎟⎠
+

⎡

⎢⎢⎢⎢⎣
τ 0

5

⎛

⎜⎜⎜⎜⎝

a
b

c
d

e

⎞

⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎦

T

+

⎛

⎜⎜⎜⎜⎝

0 0 f f f
0 0 f f f
f f 0 0 0
f f 0 0 0
f f 0 0 0

⎞

⎟⎟⎟⎟⎠
.
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Table 2 Numberings for tree
A8 with a = b and c = d = e

Arbitrary numbering Cyclic numbering

aaccc aaccc
acacc –
accac –
accca accca
caacc caacc
cacac –
cacca –
ccaac ccaac
ccaca –
cccaa cccaa

If a is not equal to b in A8 and c, d, and e are different from each other, the
vertices can be numbered in 5! = 120 ways. Each numbering is determined by the
sequence of these 5 letters. The condition of numbering cyclicity reduces the number
of combinations to 60. For a simpler case, where a = b and c = d = e, we obtain 10
arbitrary numberings and 5 cyclic numberings. These variants are presented in Table 2.

As is seen from Table 2, only one-half of arbitrary numberings are cyclic. Let us
consider one of the simplest cases for A8, where a = b = f = 1 and c = d = e = 2,
i.e., alkane 2-methyl-3,3-diethylpentane:

D0 =

⎛

⎜⎜⎜⎜⎝

0 2 4 4 4
0 4 4 4

0 4 4
0 4

0

⎞

⎟⎟⎟⎟⎠

The reduced matrix has 10 entries. At the same time, we can notice that

P = {9, 12, 15, 9} and P0 = {1, 0, 9}.

If the numbering coincides with the one shown at tree A8, we obtain

R0
5 = (4, 4, 4, 2, 4, 4, 4).

Sequence R0
5 enables one to restore the alkane. At the same time, note that, irrespective

of the actual numbering (if its cyclicity is preserved), number “2” is always present
in set R0. This is due to the fact that 2 is either the distance between vertices with
adjacent numbers, i.e., this distance is present in the matrix diagonal, or it is equal to
r15 (at the end of the first row). If we try to decode set R0 = (4, 4, 4, 4, 4, 4, 4), we will
obtain the following tree through the aforementioned algorithm:

1

2 3 4

5
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The lengths of all branches in this tree are equal: a = 2. There is no alkane of this
type, but the tree itself does exist.

5 Conclusions

The structure of the reduced distance matrix considered in this paper makes it possible
to divide this matrix into several parts, which correspond to “shells” of the tree obtained
by successive truncation of its branches [18]. These components enable us to design
new types of topological indices and to simplify the analysis of dependences between
various properties and the molecular structure.

Linearly independent entries of the reduced matrix can be regarded as constituting
a nondegenerate molecular code applicable for complicated organic compounds [15].
At the same time, one has to specify the conditions which sequence (20) must satisfy
so that it would correspond to real chemical structures. A similar problem for sequence
(3) was solved in [19].

As an example of using independent parameters that make up the reduced matrix,
let us take the expression for the Wiener index in the case of alkanes. Normal alkanes
of type 2 (that is, n-CnH2n+2) have a chain of length n −1 (a total of n −1 C–C bonds)
and the value of the Wiener index equal to

W = (n + 1)n(n − 1)

3!
= C3

n+1.

These numbers for n = 1, 2, 3, . . . are 1, 4, 10, 20, 35, 56, etc. Let us define the Wiener
function for an integer nonnegative x as follows:

W (x) = (x + 2)(x + 1)x

3!
.

Note that W (0) = 0. Then, for example, an alkane of type 3 with formula A7 has

W (A7) =
∑

(i, j)

W (ρi + ρ j ) −
3∑

i=1

W (ρi ),

For tree A2 we obtain

W (A2) =
∑

(i, j)

W (ρi + ρ j ) − (n − 2)

n∑

i=1

W (ρi ).

For alkanes of subtype 4.1 we get

W =
∑

(i, j)

W (ρi + ρ j ) − 2
4∑

i=1

W (ρi ),

and for an alkane of subtype 4.0

123



J Math Chem (2009) 45:1004–1020 1019

1

2 3

4
δ

where δ is the distance between the tertiary atoms, we have

W =
∑

(i j)

W (ρi j ) −
4∑

i=1

W (ρi ) −
4∑

i=1

W (ρi + δ) + W (δ).

Here ρi j = ρi + ρ j + δ for any (i , j) except for pairs (i , j) = (1, 2) and (3, 4), for
which δ is not included in the distance between vertices i and j .

Obviously, the latter formula for the Wiener index coincides with the previous
formula for type 4.1 if δ = 0. Similar expressions for arbitrary alkanes make it possible
to estimate the Wiener index via linear combinations of Wiener functions of parameters
constituting the reduced matrix. Notice that a similar problem is considered in [20] in
more detail but in a less generalized form, recurrent relationships are obtained in [21],
and more general formulas for the Wiener index are proposed in [22].

Evidently, for any topological index I (D) constructed on the basis of the distance
matrix, one can construct the corresponding index I (D0) using the same formula but
on the basis of the reduced matrix, i.e., with D replaced by D0. Then, for all known
relationships [1,2,17], we obtain

P = f [I (D)] ⇒ P = f [I (D0)],

That it, each dependence of property P on index I (D) can formally be put in corre-
spondence with a similar dependence on I (D0). Naturally, the parameters of function
f may change but the general form remains the same. In addition, it is interesting to
investigate such dependences not only for D0 but also for its separate components,
i.e., components of (15).

Dependences of physicochemical properties on the structure of alkanes, usually
represented as

P = a0 +
k∑

i=1

ai pk, (16)

where pk are entries of the Randić distance vector [12,13], can also be modified using
our reduced vector:

P = a0
0 +

k∑

i=2

a0
i p0

k . (17)

There are grounds to hope that formula (17) will describe the aforementioned
dependences more precisely than (16) and therefore will be useful in solution of the
structure–property problem.
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